
R 01" !E~ FOR PWJI

u,,I _ IBna it u T "

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

~DTIC

N VLSI Memo No. 88-468 ELECTE
N August 1988 NOV 3 1988

N
MESSAGE-DRIVEN PROCESSOR ARCHITECTUREI

0
William Daily, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Peter Nuth,
Jerry Larivee, and Brian Totty

AbstractS.
The Message Driven Processor is a node of a large-scale multiprocessor being
developed by the Concurrent VLSI Architecture Group. It is intended to support fine-
grained, message passing, parallel computation. It contains several novel architectural
features, such as a low-latency network interface, extensive type-checking hardware,
and on-chip memory that can be used as an associative lookup table.

This document is a programmer's guide to the MDP. It describes the processor's
register architecture, instruction set, and the data types supported by the processor. It
also details the MDP's message sending and exception handling facilities.

88 1122 ')3t

, c"c'sy " - assachuse:>* Ca"-t, br:je T eDhone

Research Ce--, tnst'lu*e Massachuselts (E 7) 253-8138
Roor- 3932 01 -echnolov 02139

Unano~ctd LJ

•~~~~~~~~.....''- | | e I | m • L

By
D4ihuti' I

.vj Juilll

Acknowledgements_____

This work was supported in part by the Defense Advance Research Projects Agency
under contracts N0001 4-80-C-0622, N0001 4-87-K-0825 and N0001 4-85-K-01 24, the
National Science Foundation Presidential Young Investigators Award, General Electric
Corporation and IBM Corporation.

Author Information

Dally, Chien, Fiske, Horwat, Keen, Nuth, and Larivee: Department of Electrical
Engineering and Computer Science, Artificial Intelligence Laboratory, MIT, Cambridge,
MA 02139. Dally: Room NE43-417, (617) 253-6043; Chien: NE43-411, (617) 253-8572;
Fiske, Horwat and Keen: Room NE43-416, (617) 253-8473; Nuth and Larivee: NE43-
415, (617) 253-6048; Totty: Department of Electrical and Computer Engineering,
University of Illinois, Urbana/Champaign, 1406 West Green Street, Urbana, IL 61801,
(217) 333-2300.

Copyright* 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

I "a dIiIIIIIaIIiIH Iil

MIT Concurrent VLSI Architecture Memo 14

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.1. Memo No. 1069 August 18,1988

Message-Driven Processor Architecture'
Version 11

William Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Peter Nuth, Jerry Larivee, and Brian Totty2

Abstract

The Message Driven Processor is a node of a large-scale multiprocessor being
developed by the Concurrent VLSI Architecture Group. It is intended to support
fine-grained, message passing, parallel computation. It contains several novel
architectural features, such as a low-latency network interface, extensive type-
checking hardware, and on-chip memory that can be used as an associative
lookup table.

This document is a programmer's guide to the MDP. It describes the
processors register architecture, instruction set, and the data types supported
by the processor. It also details the MDP's message sending and exception
handling facilities.

Keywords: Processor Architecture, VLSI, Parallel Processing, Message Driven
Processor, Fine Grain, Networks, Cache, Concurrent Smalltalk

IThis report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute
of Technology. The research described in this paper was supported in part by the Defense Advance
Research Projects Agency of the Department of Defense under contracts N0001 4-80-C-0622 and N0001 4-
85-K-0124 and in part by a National Science Foundation Presidential Young Investigator Award with
matching funds from General Electric Corporation and IBM Corporation.
2Thanks also to Linda Chao, Soha Hassoun, Paul Song, and Scott Wills.

Message-Driven Processor Architecture Version I1I

Table of Contents

Introduction ...3
Changes since Version 104.........................
P.roossor State 6

Register Descriptions ...8

M em ory ...16
Priortty-Swritchable Me oy.. 16

Network Interface ... 18
Message Queues ... 18
Message Reception... 19
SUSPEND 19
Message Transmission... 20

Exceptions.. 21
Reset ... 21
Fault Processing.. 21
System Calls... 21
Interrupts ... 21

Instruction Encoding .. 23
Instruction Set Summary .. 27
Instruction Set.. 28

2

° w- - -

Message-Driven Processor Archit-eclure Version 11

Introduction
The Message-Driven Processor is a processing node for the J-Machine, a
message-passing concurrent computer. The MDP is a standalone processor
designed to provide support for fine-grained concurrent computation. Towards
this goal the processor includes hardware for message queueing, low-latency
message dispatching, and message sending. The same chip also contains a
network interface and a router to allow the routing of messages throughout the
network without any processor intervention.

The size of the MDP's register set Is limited to minimize context-switching time.
The memory is on the chip to improve performance and reduce the chip's pin
count and the chip count of the concurrent computer. Having memory on-chip
allows more flexibility in the use of memory than in designs with off-chip
memory. For example, a portion of memory Is designated as a two-way set-
associative cache to be used by the XLATE instruction. Memory bandwidth is
improved by providing row buffers that reduce the number of memory accesses
required to fetch instructions and to enqueue messages, two operations which
require frequent use of memory.

The MDP is also designed to efficiently support object-oriented programming.
Every MDP word consists of 32 data bits and a 4 bit tag that classifies the word
as an integer, boolean, address, instruction, pointer, or other data. In the MDP
objects are described using a base address and a length, and all memory
accesses are bounds checked. Memory addressing is normally done relative to
the beginning or the head of an object. Absolute addressing is only done by the
operating system. Having tags and no absolute references permits the use of
garbage collection and transparent migration of objects to other MDP nodes on
the network.

The MDP is almost completely message-driven. It is controlled by the
messages arriving from the network that are automatically queued and
processed. There are two priority levels to allow urgent messages to interrupt
normal processing. There is also limited support for a background mode of
execution when no messages are waiting in the queues.

This Architecture document is the assembly language programmer's manual for
the MDP. It describes all of the MDP's features that are relevant to developing
software for the processor. It does not describe the hardware of the chip in
detail, nor does it explain the operating system used on the J-Machine.

3

Message-Driven Processor Architecture Version 11

Changes since Version 10

The following changes have been made to the architecture since Version 10:

0 More registers to support fault handling. Previously, we saved only the Instruction
register when a fault occurred. Now, we save: the Instruction register (in FIR), the
Instruction pointer (in FIP) and the Op0 (in FOPO) and Opi (in FOPI) operands.
Inclusion of a set of registers for bwagW mode. Thes Include: 4 data registers, 4
address registers, an IP, and an FIP. There Is no separate Q bit In the status register for
background mode. There are separate U and F bits since they are pail of the IP.
The NNR (node number register) now has 3 fields Insad of 2. This reflects the change
in machine topology from 2D to 3D. Also, the NNR Is no longer set to zero on a reset; it Is
left to software to Initialize.

0 Don-care bits instead of 0's in unused positions In registers. For example, bits 0 to 7 of
the IP register should now be considered to be dont-cares. No guarantees are made
about their value.

* The WRITE instruction no longer supports the A addressing mode for Dst (opO).
The RES (resume), MAX, and MIN instnutions are no longer supported.
The PUSH and POP instructions are no longer supported. Hence, stacks are no longer
supported. LDIP and LDIPR are now available to accomplish reloading of the IP register
when returning from a fault handler.

* The PURGE instruction Is no longer supported. Instead, a NIL data value should be
ENTERed for any key that you wart to delete from the table.

* The PROBE instruction's operand format has been changed to resemble that of XLATE.
That Is, opO specifies the Dst for the lookup, while op1 specifies the key for the search.

* The PROBE instruction now returns the data value associated with a key, rather than
merely TRUE when a successful Inquiry Is made about a key's presence in the XLATE
cache. If a key Is not found in the cache, NIL Is returned. The main difference between
XLATE and PROBE is that XLATE faults If a key Is not found or If a data value of NIL is
associated with the key, whereas PROBE sirply returns NIL. Note that PROBE now
returns NIL rather than FALSE (as was the case for version 10) It the key Is not found.
The FFB (Find First Bit) instruction has been added. it Is used to normalize floating point
values.

• The branch instructions no longer support the A addressing mode for Src (opO). Src
should be an integer, but the A registers cannot contain INT-tagged values.

* All 2-operand instructions that use the normal addressing mode for opO have a 2 bit
extension to the imm field In opO. Note that this apples to all 2-operand instructions,
irrespective of which of op2 or opi Is unused. The 2 bit extension to Imm comes from
whichever of the fields op2 or opi Is unused. These 2 bits are the high order bits of the
extended imm value. Also note that there are 2 types of Imm that can be extended.
We may use opO to specify simply an immedate value, In which case this value is now 7
bits instead of 5. We may also use op0 to specify an offset Into an obect, in which case
the offset Is now a 6 bit Immediate Instead of 4.

* A similar extension to the opo imm field Is provided for 1-operand instructions that use
the normal addressing mode. In such cases, the op2 field is always used for the 2 bit
extension.

* A NOP instruction has been added. (opcode - 0)
The ACCESS and RANGE faults have been elininated, and the ILGADRMD fault has
been merged into ILGINST.

* The size of Priority Switchable Memory has been increased from 16 words to 64 words.
* The fault vector table and call vector table have been separated, and two fault vector

tables are now supported, one for each priority level. Also, with the removal of the
RANGE fault, the call vector table is now of software definable length.

* An External Interrupt has been added. The interrupt Is handled as a fault.
• CATASTROPHE faults are now signaled if any fault occurs when the F bit is set. Also, the

F bit now disables queue overflow and external Interrupts when set.
4

Message-Driven Processor Architecture Version I1I

0 The I or the F bit disables queue overflow Intrrulms and external Interrufts.
* A Memory Address Reosler, MAR, has been added for debu~ft purpos.

An external memory Interface has been 4Adder, to appor up to 1 MegaWOrd of DRAM.
*The SEND instiona set the I bit. anW the SENDE IneniLioNs Clear the I bik. Also, all

SEND instructions use the 0p2 OWel Io encode which pfityt to sen the messag on.
*Tag checking on the specia reistsrs is only ariorced for the Address and IP reostem.
*The RTAG insirudlon niow tails on C~tjrs.

5

Messae-Driven Processor Architecture Version 11

Processor State

6.

302 109 0

3532 31 0 uf I

160

Message-Driven Processor Architecture Version 11

The processor state of the MDP is kept in a set of registers. There are two
independent copies of most registers. One for each of the two priorities of the
MDP, allowing easy priority switches while keeping the integrity of the registers.
There is also a smaller, separate set of registers for background mode. There
are no ID registers, no trap registers (FIR, FOPO, FOP1) except for an FIP
register, and no queue registers (OBM, QHL) In the set of registers used in
background mode. The registers are symbolically represented as follows:

* RO-R3 general-purpose data registers
* A0-A3 address registers
•ID0-103 ID registers
* SR status register
* IP instruction pointer register
• FIR faulted Instruction register
* FIP faulted Instruction pointer register
* FOPO faulted OP0 register
* FOPI faulted OP register
* QBM queue baseimit register

QHL queue head/tail register
T "BM translation base/mask register

* NNR node number register
* MAR memory address register

a.

7

Message-Driven Processor Architecture Version 11

Register Descriptions

3 33
5 21 0

I RO-R3IUQ IIif

Four 36-bit general-purpose data registers, RO-R3, are capable of storing any
word and tag. They are used for all data manipulation operations; as such, they
are the most accessible registers in the programming model.

3 3332 1
5 2109 09 0

lO~ll~rlilAO-A3I

The address registers, AO-A3, are used for memory references, both data and
instruction fetch. Each address register consists of a pair of integers and two
bits. The integers represent the base and the length of an object in memory.
The base points to the first memory location occupied by the object, while the
length specifies the length of the object. The length field is used to support limit
checking to insure that a reference lies within the bounds of the address
register. A M length specifies that no limit checking should be performed on
accesses through the register, effectively making the object infinitely long.

Setting the invalid bit causes all memory references using the address register
to fault INVADR. This fault is different from the one caused by referencing data
of an object past its length limit.

The relocatable bit indicates that the address refers to an object that may be
moved. This bit allows a post-heap-compaction invalidation of only the
relocatable addresses, leaving the locked-down physical addresses intact.

Address register 0 is used as the base register for instruction fetching; thus, it
should point to the method currently executing. If, however, the AO absolute bit
in the IP is set, all reads, instruction fetches, and writes through register AO
ignore the value of register AO and instead access absolute memory with an
implicit base of 0 and unlimited length. This mode only affects memory
accesses through register AO; the value of AO can still be read and written
normally.

Address register 3 is used as the pointer to the current message. When a
message is dispatched the base and length of the message are written into A3.
If the message has been copied into the heap, then A3 points into the heap;
otherwise it points into the queue.

Address registers are read and written as ADDR-tagged values.

8

Message-Driven Processor Architecture Version 11

The following algorithm describes in detail the handling of a memory access
through an address register:

To access offset D from address register An:
I n.0 wid the A bi of P is dt (AO absokAe mode is aive). wcs memo" locaion D.
Ele

I the I bi of An is set (An Wuld), fault INVADR
Els

N enh(An),,O and wo;nh(An). l UMrr
Eli

I the O flag d SR Is so amd n.3
I DNOtMsHOL), fatil EARLY
Else accesm memory ocaion bes(OBM) v ((bae(A3)+ D) A mak(OBM))

Else acm memory location bme(An)+D

3 33

IDO-ID3
tag I ID data

The four ID registers, IDO-1D3, exist to hold the IDs of relocatable objects in
memory. In normal practice ID register n should hold the ID of the object
pointed to by address register n. The ID is usually stored there by the XLATE
instruction. When a fault occurs, the address register may be invalidated. Later,
after the fault handler returns, an access through the address register causes an
INVADR fault. The fault handler can then use the ID in ID register n to
determine the new location of the object and the new value to be stored in the

* e address register. The ID registers are shadowed by the address registers; this
means that when XLATE'ing into an address register the corresponding ID
register is written with the key that was XLATE'd.

3 3332 1
5 2109 0987 0

101 UfOfs IP HaliX ... X

The instruction pointer register, IP, contains the offset within the object pointed
to by AO (or the absolute offset from the base of memory if AO absolute mode is
active) to the instruction following the instruction currently executing. Bit 9, the
phase bit, specifies whether the low or the high instruction in the word pointed
to by IP will be executed (high=0, low-I). That is, offset and phase together
point to the next instruction to be executed. The AO absolute bit, bit 8, when set,
causes all memory references (read and write, data and instruction fetches)
through register AO to ignore the value of AO. This effectively allows absolute
addressing of memory with an implicit base of 0 and an unbounded length. The
value of AO may still be read and written normally. Bit 31, the unchecked mode
bit, is a copy of the unchecked mode flag in the status register. Changing it by
changing the IP register changes it in the status register also and vice versa.
Likewise, bit 30, the fault bit, is a copy of the fault flag in the status register.

9

Message-Driven Processor Architecture Version 11

333 11
543 76 0

I X ... x insrudion

The faulted instruction register, FIR, contains the instruction that caused a fault
while the fault handler is executing or NIL if the fault was not related to the
execution of a specific instruction (i.e. an instruction fetch faulted, a bad
message header arrived, a queue overflowed, etc.). It reads as either an INST-
tagged value or NIL. Note that when FIR is non-NIL, the instruction is always
given in the low 17 bits of FIR, even if it was fetched from the high 17 bits of a
word in the execution stream.

3 3332 1
5 2109 0987 0

014 OOOffset F HX ... Il

The faulted instruction pointer, FIP, is loaded with the current IP when a fault
occurs. Since the IP is pre-incremented, the FIP contains the IP to the
instruction immediately following the faulting instruction.
3 33

5 21 0

FOPO
tags data

FOP1

tag data

The faulted operand registers, FOPO and FOP1, are loaded with the values of
the OpO and OpI operands whenever an instruction-specific fault occurs. If a
fault occurs that was not caused by a specific instruction, then the value written
into these registers is indeterminate. If a faulting instruction has no OpO or OpI
operand, then the value of FOPO and/or FOP1 is indeterminate.

3 3332 1

The queue base/mask register, QBM, contains the base and mask of the input
message queue. The base is the first memory location used by the queue. The
mask must be of the form 2n-1, with n a2. The size allocated to the queue is
equal to the mask plus 1. There is one more restriction: baseAmaskmO must

10

Message-Driven Processor Architecture Version 11

hold. This effectively means that the base must be a multiple of the size of the
queue, and this size must be a power of 2. These conditions allow queue
access and wraparound to work by simply ANDing the offset within the queue
with the mask and then ORing with the base. The disable bit, bit 30, should
normally be zero. Setting it disables message reception at the priority level of
the QBM register, which may cause messages to be backed up in the network.
This should be done only under very special circumstances, such as when the
queues are being moved. The QBM register is read and written as an ADDR-
tagged value.

The queue head/length register, QHL, contains two fields, head and length that
describe the current dynamic state of the queue. Head is an absolute pointer
(i.e. relative to the beginning of memory, It the beginning of the queue) to the
first word that contains valid data in the queue, while length contains the
number of valid data words in the queue. The length is zero when the queue is
empty, and 1 greater than the mask when the queue is full. QHL is read and
written as an ADDR-tagged value.

3 3332 1
5 2109 09 0

The 1 ~X X TbMw mask

The translation base/mask register, TBM, is used to specify the location of the
two-way set-associative lookup table used by the XLATE and ENTER
instructions. The format of the TBM register is similar to that of the QBM register.
Again, base is the first memory location used by the table. The mask must be of
the form 2n-1, with n>2. The number of words occupied by the table is equal to
the mask plus 1. As in OBM, baseAmask,0 must hold. TBM is read and written
as an ADDR-tagged value.

The status register is a collection of flags that may be accessed individually
using READR, WRITER, or the alias MOVE. The status register cannot be
accessed as a unit. It contains these flags:
* P current priority level (set: level 1, clear: level 0)
- B background execution status (set: background, dear: normal (message))
* I interrupt mask (set: no interrupts allowed, dear: interrupts allowed)
- F fault (set: fault mode, clear: normal mode)
- U unchecked mode (set: unchecked; clear:checked)
* 0 A3 queue wrap flag (set: A3 wraps around queue, clear: A3 normal)

The priority and background flags specify the current priority level of execution.
The highest level is priority 1, with the settings P-i, BO. Below that is priority 0,
with P-0, B-0. The lowest priority level is background, with B-i. When B-i,

- 11

Message-Driven Processor Architecture VerNon 11

the P flag is ignored and the background register set is selected. An attempt to
access a register that is not in the background set of registers produces
undefined results.

The interrupt mask flag, in conjunction with the fault flag, determines whether
the current process may be interrupted. Setting this flag disables all interrupts.
Clearing this flag allows interrupts. There are three types of interrupts that may
occur: priority switches, queue overflow Interrupts, and external interrupts.
Setting the Interrupt mask flag disables all interrupts, clearing this flag allows
priority switch interrupts and, if the fault bit is not set, also allows queue overflow
and external interrupts. Allowing priority switches means that background
processes may be interrupted by incoming messages at priority level 0 or 1 and
level 0 processes may be interrupted by Incoming messages at priority level 1.
Queue overflow interrupts occur when the message queue for the current
priority is full. External interrupts are explained in detail later.

The fault flag, determines whether the occurrence of a fault would be lethal to
the system and whether the process may be interrupted by a queue overflow or
external interrupt. If a fault occurs while this flag is set, the processor faults
CATASTROPHE, which should point to a special fault routine whose purpose is
to clean up, if possible, and gracefully shut down the processor or the system.
Queue overflow and external interrupts are disabled when this flag is set. This
flag is loaded (with the new IP) when a fault occurs and cleared when the fault
handler returns to the faulted program; it may, however, be altered by software
as well. There is a copy of this flag in the IP register. Changing this flag
changes it in the IP register and vice versa. There are three copies of the fault
flag, one for each priority level and one for background mode. However, the
background mode copy should never be needed in practice. No faults should
occur in background mode. The flag exist simply because it is part of the IP
format as well as being in the status register.

The unchecked mode flag determines whether TYPE, CFUT, FUT, TAGS, TAG9,
TAGA, TAGB, and OVERFLOW faults are taken; when this flag is set, these
faults are ignored, which allows more freedom in manipulation of data but
provides less type checking. There is also a copy of this flag in the IP register.
Changing this flag changes it in the IP register and vice versa. As with the F
flag, there are three copies of the U flag, one for each priority level and one for
background mode.

The A3-Oueue bit, when set, causes A3 to "wrap around" the appropriate
priority queue. This is included to allow A3 to act transparently as a pointer to a
message, whether it is still in the queue, or copied into the heap. If the message
is still in the queue, then setting the Q bit allows references through A3 to read
the message sequentially, even if it wraps around the queue. If the message is
copied into an object, then leaving the 0 bit clear allows normal access of the
message in the object. The 0 bit is set on message dispatch, but it is left to the
software to clear the Q bit when a message is copied into the heap. Either way,
the access of the message pointed to by A3 looks like any other reference
through an address register. Bounds checking is still performed using the
length of A3 when A3 is referenced and the 0 bit is set. Note that when the 0 bit

12

Message-Driven Processor Architecture Version 11

is set, the head of OHL should point to the same place as the base of A3 (since
the start of the queue is also the start of the next message to be processed).
There is a 0 bit for each priority level, but no 0 bit for background mode
(because there is no queue for background mode).

1 1

5 0 9

!;iNNR

The node number register, NNR, contains the network node number of this
node. It consists of an X field, a Y field and a Z field indicating the position of the
node in the 3D network grid. Its value Identifies the processor on the network
and is used for routing. The NNR should be initialized by software after a reset
and left in that state. The NNR is read and written as an INT-tagged value.

3 33 21

:IoMommy Address

The Memory Address Register, MAR, is provided for debugging purposes and
should therefore be of little use to the applications programmer. This register
contains the value of the most recent memory address generated by an opO

*' read or write; this is an absolute value from the base of memory. Note that this
register is only written by opO memory references and not instruction fetches or
any other implicit memory references. The MAR is read only and cannot be
written using the WRITER instruction.

13

Mesaige-Driven Processor Architecture Version I1I

Data Types

The following data types may be used in a word:

3 3332 1 1 1
5 2 109 76 09 0

000 value (0mNL) SYM
0 01 two% complemnent VAu INT
0100 ... b BOOL

0 11r il bae lngh ADDR
0 0 0ulfi offset M x... x Ir
0 1 1ufI offset lengh MSG

01 1 0 user-defined OFUT
0 1 11 user-defined FLIT
1 0 00 user-desfined TAGS
1 0 0 1 user-4efined TAG9
1 0 1 0 user-defined TAGA
1 01 1 user-defined TAGB
111 00 first instruction second Instruction INSTO
1 10 1 first instruction second instruction INST1

I1I1 0 first instruction second instruction INST2
I I 1 1 first instruction second instruction INST3

* SYM contains an atomic symbol. EQUAL and NEQUAL are allowed on SYMbols. If the
data portion of a symbtol contains all zeroes, the word takes on the value of NIL.

* INT contains a two's complement Integer between -231 and 231-1, inclusive. All
arithmetic, logical, and comparison operations are allowed on INTS.

*BOOL contains a boolean value, which Is either true (bW) or false (bmO). AN logical, and
comparison operations are allowed on BOOLs. For purposes of the comparisons, false is
considered as less than true.

*ADOR contains a base/length pair that may be loaded Into either one of the address
registers or OBM, OHL, or TBM. The uses of bits 30 and 31 vary among these registers.

* IP contains a value appropriate for loading into the IP. See the IP register section for a
description of the fields.

* MSGIs the header of amessage. ft Is similar to anlP except that It has no phase bit or
absolute bit and the low order 10 bits contain the length of the message (inckiuing the
MSG word).

* CFUT contains a context future. Almost all operations fault on context futures. They are
not meant to be MOVEable. CFUTs are used as placeholers for values to be computed
In parallel by other processes; an attempt to read a CFUT before Its value Is available will
fault, and the operating system suspends the current process until the value Is available.

* FUT is a standard future. FUTs may be moved, and their tags my be read mid written, but
they may not participate in any puimitive operations such as addition or checking for
equaity. As with CFUTs, an attempt to use a FUIT In a primitive operation causes a fault,
and the operating system will have to provide the appropriate value for the FUT.

14

Message-Driven Processor Architecture Version I11

* TAGS through TAGS are tags for software-deffined words. They cause fault on all
primitive operations except EQ, NEQ, BNL and 13NNIL

* INS TO through INST3 are tags for Initrctons. The two Inhtnjctions in a word occupy a
totalof34bills, so Iwo taglsealsoused 1encode thent

15

Message-Driven Processor Architecture Version 11

Memory
The prototype MDP contains 4096 words of RAM; there are 4096 words
reserved for ROM, although not all of this reserved ROM space is actually used.
If the MDP has external memory available, it is placed above the ROM. Future
MDPs may have more memory and different address maps, so user progrts
should not rely on absolute memory locations other than the fault vectors.

Certain memory locations have special purposes assigned to them by the
hardware. These are ottlined in the table below.

From To

$00000 $0001 F Pro Swhable Memory 0
$00020 $0003F Pio"ty Switchable Memory I
$00040 $0OiSF Priority 0 Fault Vectors
$00060 $0007F Priodty 1 Fault Vectors
$00080 $OOFFF Uncommitted RAM
$01000 $01 FFF RCM
$02000 $FFFFF External Memory address space

Within the uncommitted internal RAM, the operating system usually allocates
the first few hundred words to the call vector table, the message queues, and
the XLATE cache and leaves the rest of RAM for user programs. The call vector
table length is operating system definable, but its base must be location
$00080.

The External Memory Controller for the MDP supports dynamic memory
refreshing and error checking / correction (ECC). The memory signals a
DRAMERR fault when a double-bit error occurs; single-bit errors are corrected.
Access to the Refresh Timer Counter, RTC, and the Error Counter, ERC, is
provided through memory locations $2000 and $2001 respectively. The RTC is
a 7 bit register. Writing the RTC sets the interval between refresh operations.
Reading the RTC returns the current count. The Error Counter is an 8 bit
register that is incremented every time a single bit error is detected. Only the
bottom seven bits of the ERC are used as a counter; the 8th bit disables ECC
when set.

Priority-Switchable Memory

In order to allow each priority level to have 32 private temporaries, the first 64
words of memory are decoded specially. When accessing one of these 64
words, the current state of the P flag is XORed with bit 5 of the address; hence,
referencing location 1 accesses physical location 1 when running in priority
level 0 (P flag dear) or location 33 when running in priority level 1 (P flag set).
This scheme lets the operating system and user programs use memory

16

Message-Driven Processor Aruitecture Version 11

locations 0 through 31 as temporaries private to the current priority level. The
other priority level's temporaries can be accessed as locations 32 through 63.

*6

17

L4

Message-Driven Processor Architecture Version 11

Network Interface

Message Queues

Incoming messages are queued in message queues before being dispatched
and processed. There are two message queues, one for each priority level.
Each message queue is defined by two registers-QBM, the queue base/mask
register, and QHL, the queue head/length register. The queue base/mask
register defines the absolute position and length of the queue in memory. In
order to simplify the hardware, the length must be a power of 2. and the queue
must start at an address that is a multiple of the length. The queue head/length
register specifies which portion of the queue contains messages that have been
queued but not processed yet (including the message not yet dequeued by
SUSPEND). To avoid having to copy memory, the queue wraps around; if a
twenty-word message has arrived and only eight words are left until the end of
the queue, the first eight words of the message are stored until the end of the
queue, and the next twelve are stored at the beginning. The queue head/length
register contains the head and length of the queue instead of the head and tail
to simplify the bounds-checking hardware involved in checking user program
references to the queue. Below is a diagram of a queue with one message
being processed, two more waiting, and a third one arriving.

A3 Lanotj 013 M Base

OHL L&V '

Incoming Message OBM Mask

A3 Base
OHLHea IIesg

Due to the presence of row buffers in the hardware, messages are always
stored at multiples of four words in memory, sometimes causing there to be one,
two, or three words of wasted space between messages in the queue. This
alignment is transparent to the software; the length and head in OHL are
automatically aligned to multiples of four words by the hardware. The length
field of the message header specifies the exact length of the message.

When messages are dispatched, the A3 register is written with the base field
from the QHL and the length field from the bottom 10 bits of the message
header. The 0 bit in the status register allows accesses to messages that are
"wrapped around," such as the twenty-word message in the example above.

18

Message-Driven Processor Architecture Version- 11

A message may interrupt lower priority processes and be dispatched as soon
as the first queue row buffer Is written into the queue; the processor does not
wait until the entire message Is present before dispatching it. Read acoesses to
words through A3 with the 0 bit set are also checked against the length of the
current message and the length of the queue; If the latter test fails, an EARLY
fault is generated to indicate an access to data In the message that has not yet
arrived. Writes through A3 are never checked for EARLY faults. Note that if the
check against length of the current message fails, a LIMIT fault Is generated
instead. The EARLY fault is necessary because the length of the current
message may be longer than the current length of the queue. When a message
comes in, the header tells what the length of the complete message is; this is
the current message length. The length of the queue Indicates how much of the
message has actually arrived.

Message Reception

There are two stages in processing of messages: queueing and execution. In
general, incoming messages from the network are first queued in the priority 0
or 1 queue. When a message begins arriving in a queue, execution begins. If
the message starts executing and references an item that Is not yet in the
queue, an EARLY fault occurs. There are a few places where delays could
occur in the above procedure. These are outlined below.

0 If the D b of a OBM Is set, the corresponding queue Is disabled. Mssages are not
allowed into the queue until that bit is cleared. This may cause backups In the network.

* If a queue is full, the effect is the same as In the above situation. If the processor Is
excuting at the same level of priority as the message and the F and I flags are dear, a fault
is generated to warn the processor about the conition.

0 The I flag In the status register prevents messages from Interrupting lower priority
processes when It Is set. They may, however, be queued.

• An arriving message may internipt a process running at a lower priority level but not one
running at the same priority level. That Is, priority level 1 messages may Interrupt level 0
message handlers and background processes, while priority level 0 messages may only
Interrupt background processes.

When the processor begins executing a message, the B flag is cleared, P is set
to the priority at which the message arrived on the network, and the IP offset is
loaded from the first word of the message, which must be tagged MSG; if it isn't,
a MSG fault is taken. The F and U flags are all loaded from the message
header. A3 is set up to point to the message in the queue; the 0 flag of the SR
is always set. The AO Absolute bit and Phase bit of the IP are set to 1 and 0
respectively.

SUSPEND

The SUSPEND instruction terminates the processing of the message. First it
flushes one message from the proper input queue. Then, if another message
(of either priority) is ready, it is executed as described in the Message
Reception section. Otherwise, the IP is fetched from the background IP and
execution resumes with the next instruction of background code. A SUSPEND
executed in background mode produces indeterminate results.

19

Message-Driven Processor Architecture Version 11

Note that every message arrival corresponds to exactly one SUSPEND. This
SUSPEND terminates the processing of the message and also flushes the
message. Therefore, every MDP routine that gets executed by a message must
terminate with a SUSPEND at some point.

Message Transmission

The SEND, SEND2, SENDE, and SEND2E instructions are used to send
messages. The first word sent specifies the absolute node number of the
destination node (i.e. the destination nodes NNR value) in the low 16 bits. The
SEND instruction uses the current node's NNR and the destination node
number to find the relative offsets in the X. Y, and Z dimensions that the network
controllers use in routing the messages through the network. The tag of the first
word is currently Ignored, although It is recommended that the tag be INT. The
op2 field of each SEND Instruction determines the priority at which the
message is to be sent over the network: 0 means priority level 0 and 1 means
level 1. The priority of the message is independent of the priority of the process
that is sending it.

The initial routing word is followed by a number of words which the network
delivers verbatim to the destination node. The network does not examine the
contents of these words. The message is terminated by a SENDE or SEND2E
instruction, which sends the last one or two words, and tells the network to
actually transmit the message. The first word that arrives at the destination node
(the second word actually sent, since the routing word Is only used by the
network and doesn't arrive at the destination node) must be tagged MSG. It
contains the length of that message including the message header but not
including the routing word preceding it. It also contains the initial value of the IP
at which execution is supposed to start. The destination node faults MSG if this
word is not tagged MSG.

The total time between the first SEND and the SENDE should be as short as
possible to avoid blocking the network. To accomplish this the SEND and
SEND2 instructions set the I flag and the SENDE and SEND2E instructions
clear the I flag, thus disabling interrupts during message transmission. For the
same reason, faults should be avoided while sending.

20

Message-Driven Processor Architecture Version 11

Exceptions

Reset

When the processor is reset, the status register flags are set as follows:
OQQ'O, U-U'-I, F-P0, I--, B-I, P-O. The A bit in the IP and D bits in both
QBM registers are set. The background IP offset is set to the first location in
ROM. The program that gets executed (starting at the first location in ROM) on a
reset should set up the queues, NNR, and at least some of the fault vectors and
then clear the I flag and the D bits In the QBM registers to allow message
reception.

Fault Processing

When a fault occurs, the instruction that caused the fault is saved in the FIR
register, the current IP (which points one instruction beyond the faulting
instruction) is saved in the FIP register, and the values of the Opo and Opl
operands (if any) are saved in the FOPO and FOP1 registers; the IP is then
fetched from the memory location whose address is equal to the fault number
plus the base of the fault vector table of the current priority (when In Background
mode the fault vector table for whichever priority Is selected by the Priority flag is
used). If the F bit is set and a fault occurs then the IP is loaded from the
CATASTROPHE fault vector. The U, A, and F bits of the IP that gets loaded may
change the processor state. U determines if this priority is in unchecked
mode, A determines if AO absolute mode is in effect, and the F bit determines
whether the fault is non-reentrant and interruptible.

System Calls

A system call (via the CALL instruction) mimics some of the behavior of a fault to
provide convenient access to system routines. When a CALL occurs, the base
of the system CALL vector table is added to the CALL operand, and the
contents of this location are fetched, yielding a call handler IP. The current IP
(which points to the next instruction) is saved in the current priority's FIP
register. Execution then begins by loading the call handler IP (which sets the F,
A, and U bits in the status register to the values in the call handler IP).

Interrupts

There are three types of interrupts supported on the MDP: priority switches,
queue overflow interrupts, and external interrupts. Priority switches may occur
at any time, provided that the I flag is clear; queue overflow and external
interrupts may only occur when both the I and F flags are clear. Priority
switches should be the most common interrupts; these occur when a message
arrives in the queue of a priority higher than the current priority. Thus, priority 1
messages can interrupt priority 0 or background mode, and priority 0 messages

21

SMessage-Driven Processor Architecture Version 11

can interrupt background mode. The handler for a priority switch is the
interrupting message itself.

Queue overflow interrupts are signalled when the last empty word of the queue
is written, but may cause an interrupt only when running at the same priority as
the queue which overflowed. In other words, if the priority 0 queue overflows
and a priority 1 process is currently running then the handler for the queue
overflow must wait until all pending priority 1 processes have suspended before
it can start execution. Ukewise, if the priority 0 queue overflows and a
background mode process is currently running and either the F or I flag is set
then the handler must wait until both flags are cewed before execution can
begin. When a queue overflow interrupt is taken, a fault is signalled and the IP
is loaded from the QUEUE fault vector.

External interrupts are similar to queue overflow Interrupts except that whenever
the I and F flags are clear and an external interrupt is signalled, a fault is
signalled at the current priority and the IP is loaded from the INTERRUPT fault
vector. The interrupt is handled as a process of the same priority as the priority
which it interrupted. An external interrupt is signalled by an external interrupt
pin on the MDP package.

Interrupts may occur only between instructions. After an Interrupt the FIP points

to the next instruction of the interrupted sequence.

The following faults are defined:

Name Fault Number Description
CATASTROPHE $0 Double fault,bad vector, or other catastrophe.
INTERRUPT $1 Interupt pin has gone active.
QUEUE $2 Message queue about to overflow.
SEND $3 Send buffer ful.
LGINST $4 Illegal instruction.
DRAMERR $5 Double bit error in the extemal RAM.
INVADR $6 Attempt to access data through address register with I bit set.
LIMIT $7 Attempt to access object data past Irt.
EARLY $8 Attempt to access data in message queue before it arrived.
MSG $9 Bad message header.
XLATE $A XLATE missed.
OVERFLOW $B Integer arithmetic overflow.
CFUT $C Attempted operation on a word tagged CFUT.
FUT $D Attempted operation on a word tagged FUT.
TAG8 $E Attempted operation on a word tagged TAG8.
TAG9 $F Attempted operation on a word tagged TAGS.
TAGA $10 Attempted operation on a word tagged TAGA.
TAGB $11 Attempted operation on a word tagged TAGB.
TYPE $12 An operand or a combination of operands with a bad tag type

used in an Instruction.
$13-1F Reserved for future faults.

Note: if multiple faults occur simultaneously the fault vector chosen Is the one that has the
highest precedence. Each fault is assigned a precedence by Its fault number; lower fault
numbers correspond to higher precedence.

22

Message-Driven Processor Architecture Version 11

Instruction Encoding

The program executed by the MDP consists of instructions and constants. A
constant is any word not tagged INSTO through INST3 that is encountered in
the instruction stream. When a constant word is encountered, that word Is
loaded into RO and execution proceeds with the next word.

Every instruction is 17 bits long. Two 17-bit instructions are packed into a word.
Since a word has only 32 data bits, two tag bits are also used to specify the
instructions. The instruction in the high part of the word is executed first,
followed by the instruction in the low part of the word. As a matter of convention,
if only one instruction is present In a word, t should be placed in the high part,
and the low part of the word set to all zeros.

The format of an instruction is as follows:

16 11 10 9 8 7 6 0

I 2nd Ist

Ir I " I
op2 opt opO

The opcode field specifies one of 64 possible instructions. The other fields
specify three operands; instructions that don't require three operands may

i * ignore some of the operand fields. Operands 1 and 2 must be data registers;
their numbers (0 through 3) are encoded in the 1st reg 0 and 2nd reg # fields.
Operand 2, if used, is always the destination of an operation and operand 1, if
used, is always a source.

In the case of 1 -operand and 2-operand instructions that use opO in the normal
addressing mode, one of op2 or opl is used to provide a 2 bit extension to an
imm value specified in opO (if an imm value is specified in opO). In the case of
2-operand instructions, the 2 bit extension is found in whichever of op2 or opl is
not used. The 2 bit extension is always in the op2 field for 1-operand
instructions.

23

Message-Driven Processor Architecture Version 11

Operand 0 can be used as a source or a destination in an instruction. It can
hold two possible encodings. A normal instruction has opO address mode
encodings as follows:

6 0

Normai
,dremn M Syntax Addressing Mode

0 0 0 0 o0T Rn Data registerRn
0 0 0 0 1 An An Address register An
0 0 0 1 0 0 0 NIL Immediate constant NIL (SYM:0)
0 0 0 1 0 0 1 FALSE Immediate constant FALSE (BOOL:0)
0 0 0 1 0 1 0 TRUE Immediate constant TRUE (BOOL:l)
0 0 0 1 0 1 1 $80000000 Immediate constant lNT:$800000
0 0 0 1 1 0 0 SFF Immediate constant INT:$OOOOOOFF
0 0 0 1 1 0 1 $3FF Immediate constant INT:$000003FF
0 0 0 1 1 1 0 $FFFF Immediate constant INT:$OOOOFFFF
0 0 0 1 1 1 1 $FFFFF Immediate constant INT:$OOOFFFFF
0 0 1 [Rx (Rx,An] Offset Rx in object An
0 1 im imm Immediate imm (signed)
1 imr I An [imm, An] Offset imm (unsigned) in object An

The immediate constants are eight immediate values outside the range
INT:-1 6..INT:15. They are provided for convenience and code density
improvement. The $FF and $FFFF constants are useful for masking bytes and
words, while the $3FF and $FFFFF constants may be used for masking lengths
and addresses.

The imm field is extended by 2 bits for all 2-operand operations that use this
normal addressing mode for opO. These extra 2 bits are obtained from either
the op2 field or the opl field (whichever one happens to be unused). The 2 bits
serve as the high order bits of the extended imm value. If simply an immediate
value is being specified by opO, then this value is now 7 bits instead of 5. In the
case of an offset into an object, the offset is now a 6 bit immediate value instead
of only 4. This extension allows much longer branch distances.

24

Message-Driven Processor Architecture Version 11

The register-oriented opo mode is used instead of normal opO mode by the
READR, WRITER, and LDIPR instructions. The register-oriented opO mode
encodings are as follows:

6 0

Regiotr-Oriented
I n I I Syntax Addressing Mode

B P 0 0 0 Rn Rn Data registerRn

B P 0 0 1 An An Address register An
- P 0 1 0 IDn IDn ID register Dn
B P 0 1 1 0 0 FIP Trapped Instruction pointer
- P 0 1 1 0 1 FIR Trapped Instruction register
- P 0 1 1 1 0 FOPO Trapped OPO register

- P 0 1 1 1 1 TrappedOPI register
- P 1 0 0 0 0 QBM Queue Base/Mask register
- P 1 0 0 0 1 QHL Queue Head/Length register
B P 1 0 0 1 0 IP Instruction Pointer register
- - 1 0 0 1 1 TBM Translation Base/Mask register
-.- 1 0 1 0 0 NNR Node Number register
-.- 1 0 1 0 1 MAR Memory Address Bus register
-.- 1 0 1 1 0 Unused (ILGINST fault)
-.- 1 0 1 1 1 Unused (ILGINST fault)
-.- 1 1 0 0 0 p Priority Levelflag

--- 1 1 0 0 1 B Background Execution flag
-'- 1 1 0 1 0 I Interrupt flag

B P 1 10 1 1 F Fault flag
B P 1 1 10 0 U Unchecked flag
-P 1 1 1 0 1 Q A3 Queue flag
-.- 1 1 0 Unused (ILGINST fault)

1 1 1 1 1 Unused (ILGINST fault)

B represents the use of the Background register set or one of the two priority
register sets. The B bit is XORed with the Background Flag and a register set
chosen according to the result; I indicates the background registers, while 0
indicates the register set chosen by the P bit relative to the present priority.The
assembler syntax for specifying a register belonging to the background is the
register name followed by a "B".

25

Message-Driven Processor Architecture Version 11

P represents the priority of the register being accessed, and is relative to the
current priority. 0 indicates the current priority, while 1 indicates the other
priority. The assembler syntax for specifying a register belonging to the other
priority is the register name followed by a backquote ').

Certain registers are typed-their values always read as a given type, but
attempts to write values of a different type do not fault. The address and IP
registers however are checked on writes and writing a value of any value other
type than that specified does fault TYPE, CFUT, FUT, TAG8, TAG9, TAGA, or
TAGB except in unchecked mode, depending on the value that is attempted to
be written. Below is a table of the types of the registers.

Register Type

Rn Any
An ADDR
IOn Any
QBM ADDR
OHL ADDR
IP IP
FIR Any
FIP IP
FOPO Any
FOP1 Any
TM ADDR
NNR INT
MAR NT
P BOOL
B BOOL
I BOOL
F BOOL
U BOOL
a BOOL

26

I iei

message-Driven Processor Architecture Version 11

instruction Set Summary
Mnemonic Operands Nome op, Modes Types

General movement and Type Instructions
READ Src.Rd Mone Word S01 R.Am.l.c Allbut CFUT
WRITE Rs,Dst M6ove Word $02 m AN
READR Src.Rd Read Ragiute $03 Register Al but MIUT
WRITER Rs~st write Register $04 Register Al
RTAQ Src.Rd ReeW Tog $06 R.AmI,c Albut CRUT
WTAG R,Src.Rd Write Tag $We R.Am,~c: AN.lnt
LDIP Sre Load FP $07 R.Am.I.c Ip
WDIPR Src Load IP from Register $06 Register Ip,
CIECK R*,Src.Rd Chec Tag $00 ,Am,c All.1rt

Arithmetic and Logic Instructions
CARRY Rs,Src.Rd Carry from Add SoA R.Ami.c Int,int
ADD Rs.Src.Rd Add $0 R.A.l.c Int,lnt
SUB Rs.Src:.Rd Subtract *OC ,Am~l,c lnt.Int

MUH Rs,Src.Rd Multily High $OE RAm~l,c Int.lnt
IL Rs.Src,Rd Multiply SoF R.Am.l~c: lnt.lnt

ASH Rs.SmcRd Arithmetic Shift $10 .Am,i~c Int,lnt
LSH Rs,Src.Rd Logical Shift 811 ,Am.lic lnt,lint
ROT Rs.Src.Rd Rotate $1 R.Am.l.c: IntInt
AND RsSrc,Rd And $is R.A.,.c int,it or Bool.Bool
OR R,Src,Rd Or $19 R.Am.I,c lnt~kn or BoolBooI
XOR RsSrc,Rd Xor SIA R.Am.Ic bWt,int or BoolBool
FFB Src.Rd Find Fwst Bit $18 RAm.l~c: tnt
NOT Src,Rd Not $IC R.Am,i.c Int or Boot
NEG Src,Rd Negate $1D RArm,l~c tnt
LT Rs,Src. Rd Loua Than $20 RAm.lic ktt.ktt or BoolBool
LE R*,Src,Rd Less Than or Equal $21 RAm,i~c KIMln or B001,800l
GE Rs,Src.Rd Greater Than or Equal $2 R.Am~ic Int,int or Bool.Bool

9GT RsSrc,Rd Greater Than $2 ,Am,i~c kIt.lnt or Boot.Bool
EQUAL Rs,Src,Rd Equal $24 RAmL~c kIt,lnt or Bool.Bool or Sym.Sym
NEQUAL RsSrcRd Not Equal $25 RAmi.c Int.lnt or Bool.Bool or Sym,Sym
EQ Rs.Src.Rd Pointer Equal $26 .Am,i.c Al but CFut or Fut
NEO Rs.Src. Rd Pointer not Equal $27 R.A.l.c N but CFt or Fut

Network Instructions
SEND Src,P Send $34 .Am.l,c N bW CFut
SENDE Src,P Send and End $35 ,Am,l~c N but ClFut
SEN02 Src.Rs.P Send 2 $36 R.A.m.l~c N but CFut
SEN02E Src.Rs.P Send 2 and End $37 ,A,i,c N but ClFut

Associative Lookup Table Instructions
XLATE Rs,DstC Associative Lookup $28 R.A n but ClFut
ENTER Src,Rs Associative Enter $29 A N but CFutN but ClFut
PROBE Rs, Dst Probe Associative Cache $20 R N but ClFut

Special Instructions
NOP NOP $00
INVAI. Invalidate $2A
SUSPEND Suspend SW0
CALL Src System Call $31 RAm. I nt

Branches
BR Src Branch $38 KI tnt
BNIL Rs,Src Branch iN NIL $3A Ri N but CIFutInt
BNNIL Rs,Src Branch If Non-NIL. $36 R~i N but CFut,Int
BF RsSrc Branch Nf False $3C R,i Bool,lnt
BT RsSrc Branch I True $3D Rji Boot. mt
ez Rs,Src Branch if Zero $3E Ri lnt.Int
BNZ Rs,Sfc Branch Nf NonZero $3F Ri Int.Int

27

Mssage-Driven Processor Architecture Version 11

Instruction Set
Below is a table of the instructions available on the MDP listed in numerical
opcode order. The instructions are specified as follows:

URITZ Rs, Dst Move Word 0" ° ° R IDs D_
MOV Rs, Dst I

Modes: m Types: Fault: TYPE

CFUT rUT TAGS
TAG9 TAGA TAGB

Legal Addressing Legal Oeir an Puls
Modes Types

The Legal Addressing Modes field specifies which addressing modes are legal
with this instruction. Any illegal addressing modes are crossed out. R specifies
data registers, A address registers, m memory (either [RxAn] or [imm,An]), i
immediate (a signed imm value), and c constant (one of the 8 immediate
constants). If the register-oriented mode is used instead, the Modes field
contains a single box with the words Register Mode in it.

The Legal Operand Types field specifies which combinations of types of
operands are legal. Each row in the table indicates a legal combination of
types. Some instructions have more than one combination of legal types. For
these instructions a TYPE fault occurs if both types are legal but their
combination is not. For example, the AND instruction faults TYPE if one of its
operands is a BOOL and the other one is INT, even though it does accept two
BOOLs or two INTs. Illegal types cause either a TYPE fault or CFUT, FUT, or
one of the TAG faults. When two different words with bad types are used as
arguments, the fault corresponding to one of them is signalled; it is not specified
which has precedence.

The Possible Faults field specifies the faults that are possible with this
instruction. The common faults (CATASTROPHE, ILGINST, ACCESS, EARLY,
LIMIT, INVADR, and MSG) are not listed, as they may occur for almost all
instructions and behave in the same way for all instructions.

28

Message-Driven Processor Architecture Version 11

I NOP cOooo 00 1ooc1occo

RERD Src, Rd Move Word I ooo IN I I I sc I
NOW Src,Rd

1CFUT 1

Rd4-Src

WI=TE Rs,Dst Move Word 1 ooo I I1 Det

MOV0 Rs,Dst -- _

Mode: yp ' T: Fauls:

AN types (including CFUT) may be moved into memory.S.
SiADR Src,Rd Read Register 000011 Ii00 Src I),oVE Src,R _______________.____

Modes: [ister M1] Types: Fouls: CFUT

(CFUTj

FR +- Src

MITZR Rs,Dst Write Register Iloolto cl As Ds

isv RsDst

Modes: I egistr;ode Types: Re Faults: TYPE

CFUT FUT TAGS
TAG9 TAGA TAGS

D9 - Rs

"PFs should have the patper t for the register dOCribd by Dst. Type deddtng is gone only for
the address and F registers, when the unchecdled flag is off.
An types (including crUT) may be moved to other locations.

29

Message-Driven Processor Architecture Version 11

ATG Src, Rd Read Tag 000101 FU I Src_

Modes:I R AM I 7cI Tye:Hgn Faults: CFUT

Rd +- zNT.1ag(Src)
Not* that access is allwed to the address registe. Immediate, and constant modes, but these
operations are not very useful since address regiemalays have an ADOR tog. while immedlates
always have an INT tog and constants also have fkeod tags.

lITAG Rs, Src, Rd Write Tag 1oii 010 Rd Re &c

Modes: I1RJI A I Types: Rs Se Fault: TYPE
CFUT FUT TAGS

AN INTTAG9 TAGA TAGS
RANGE

Rd +- Src:Rs

Src should be an Integer between 0 and 15, Inclusive. Src must be an Integer unless the U flag is
set. Rs can be any type.

LDIP Src Load IP 1000111 1 1 001 Sr~c

Modes: IRLImITypes: ScFaults: CATASTROPHEH TYPE CFUT FUT

I -S...IP
TAGS TAG9 TAGA TAGB

Src should be an IP-aged value.

L PR ScLoad I P from _______ ___

LIR ScRegister I001000 00100 Src

Modes: LRegister Moe Types: ScFaults: CATASTROPHEH TYPE CFtJT FUT
I~Pr TAGS TAG9 TAGA TAGS

IP +- Sre.

Src should be an IP-tegged value.

30

Message-Driven Processor Architecture Version 11

C c= Rs, SrcRd Check Tag 001001 I" RI S I

Mod"s: I R T1TA Types: As Isic Foaas: TYP
CFUT FUT TAGS

AN IT TAG9 TAGA TAGS

Rd - SOOL.a(Rs),Src. Sic mus be an integer unless the U fta I se.

CA.Y Rs,Src, Rd Carry from Add I001010 I 1 si

ADD Rs, Src,Rd Add 001011 IRd IR S I

SUB Rs,Src,Rd Subtract 1 oo1oo I1 R I

Modes: R I Types: Faub: TYPE
CFUT FUT TAGS

IT INT TAG9 TAGA TAGS

OVERFLOW

Add: Rd i- RsSrc

Sub: Rd ,- Ae-Src

An overflow occurs In checked mod* when the signed result isnt the sum/difforence of the signed
parameters.

Carry returns 1 N adding the two numbers would generate an unsigned carry and 0 otherwise. It
should not be used in checked mode, as it causes an overflow under the same cnditions that add
overflows. Add and sub produce results modulo 232 in unchecked mode. In unchecked mode the
type of Rd is the same as the type of Rs.

31

Message-Ddven Processor Architecture Version 11

KULK Rs,Src,Rd Multiply High 1 oo,,o ! 1d Ra Src

KUL Rs, Src,Rd Multiply 1I001111 R Re Src

Modes: IRAImITypes: Re SC Faults: TYPE
CFUT FUT TAGS

ruT rNT ThG9 TAGA TAGB

OVERFLOW

Mu: Rd 4- RPsSrc
An overflow occurs in checked mode when the signed result sn't the product of the signed
parameters.

u/ returns the high 32 bits of a 64-b product. t should not be used In cucked mode, as It
causes an overflow under the same conditions as mul overflows (i.e. when the signed 32"32
product doesn't fit in 32 bits). In unchedcd mode Mul returns the lower 32 bits of the 64-bit
product, while DA/H returns the upper 32 ie of that product. In unchecked mode the type of Rd is
the same as the "pe of Rs.

ASK Rs, Src,Rd Arithmetic Shift o oo IRI I sRe rc

LS- Rs,Src,Rd Logical Shift 1ioo1 !Rd R Src

Modes: I Types: [s} S.. Faults: TYPE

CFUT FUT TAGS
INT INT TAG9 TAGA TAGB

OVERFLOW

Ash: Rd4- Rs<<Src

Lsh: Rd-Rs<.cSc
Src may be negative and may be very large. It Is not treated modulo 32; instead, Re Is shifted by
Src bits to the left or rght i Src is negative, whatever Src happens to be. For example, iN Src,-50.
Rd is et to 0 by LSH and by ASH when RZO and Io- Aby ASH when R@<o. ASH trets Re as a
signed quantity, while LSH treats it as unsigned. An overflow occurs when Sv>O and significant
bits are shifted from the number; bite shifted to the right from the number are ignored. In
unchecked mode the type of Rd is the same as the type of Re, and Src is eaed as it were a
signed integer.

32

Message-Driven Processor Architecture Version 11

ROT Rs,Src,Rd Rotate 010010 IFI R Sr

Modes: R A Imj~c Types: Re Sc Faults: TYPE
-CFUT FGT TAGS

INT INTTAG9 TAGA TAGS

Rd +- Rs rotated left Si bils

Thia roateshteaof hs its~oou oie f telt " oR e hifted bid at theright side. Src is an Integer treated modulo 32 (since a rotate of 32 bits is the identity
transformation). In unchecked mode the type of F ithe ame as the type of Rs.

AND Rs,Src,Rd AND 011000 I i °s Src

OR Rs, Src,Rd OR 011001 oR',, I s Src

XOR Rs,Src,,Rd XOR 011010 IRd1s Src j

Modes: R IIA Im c Types: Src Rs Faults: TYPE

CFUT FUT TAGS
INT INT TAG9 TAGA TAGS

lt OOL BOOL

And: Rd -- Rs&Src

Or: Rd fIfSrc

Xor: Rd ,- RsASrc

The operations are bitwise in uncheced mode and in checked mode when performed on integers.
A TYPE fault occurs in checked mode if Rs and Src have different types. The type of Rd is the
same as the type of Rs.

77" Src,Rd Find First Bit 1 011011 I i Src

Modes: 1W mliT Types: SCFaults: TYPE
CFUT FUT TAGS

TAG9 TAGA TAGB

Rd +- FFB(Src)

Rd is loaded with an integer value between 0 and 31, indusive. This indicates how many bits must
be traversed, going from left to right starting from bit 30, in order to find the first bit not equal to the
sign bit (bit 31). (for example, FFB($80000000)-0, FFU($E0000000)-2, and FFB($20000000)-I)
This is useful for normalizing floating point values.

33

Message-Driven Processor Architecture Version 11

Src, Rd NOT 0 o,1i I

Modes: R A FI1m 1 Types: Faul: TYPE

CFUT FUT TAGS
TAG9 TAGA TAGB

BOOL

Rd +-- -Smc

This is a bikwise operation on integens. In unchewd mode l 32 bI t we awmpleMented for all
InpUt types except booleans, In which only the lat significant bit is compl ermnted.

KEG Src,Rd Negate 1I°01o IU1I! SE

Modes: IRIAIm cI Types: Faub: TYPE
CFUT FUT TAGS
TAG9 TAGA TAGS

OVERFLOW

Rd +- -Src

Note that this operation can oveiflow I Src-$0000000.

LT Rs, Src, Rd Lessthan I booooo IRI A s

- Less than or 1i100001 ____________

I Rs, Src,Rd Equal 100001 Rd Re Sto

Greater than or 100010_____________
G Rs,Src,Rd Equal 100010 Rd IS Src

G Rs,Src,Rd Greater than 1 1oo11 Rd !!s o Src

Modes: R WA1 m Types: Rs Sc Faults: TYPE
CFUT FUT TAGS

IN TAG9 TAGA TAGB

BOOL BOOL

Lt: Rd - BOOL:RS < Src

Lo: Rd -oOL:R 5 Src

Go: Rd - nOOL:Rs z Src

Gt: Rd - BOOL:Rs Src

A TYPE fault occurs in checked mode N Rs and Src have different types. In unchecked mode
these instructions ignore tags and compare only the data fields.

34

Message-Driven Processor Architecture Version 11

RQUAL Rs, Src, Rd Equal 100100 I R1d1 Src I

IVQUAL Rs,Src,Rd Not Equal 100101 INIII Sr I

Modes: I ~c Types: Ph Stc FaNUls TYPE
CFVT FliT TAGS

INT INTTAGS TAGA TAGS

BOOL BOOL

Equal: Rd .. ooLR8 = Sre

NEqual: Rd - DOOLRS 0 Src

A TYPE fault occurs in cheked mode I Re and Ste have different types. In unchecked mode
these Instrucions ignore tags and compare only the dat fields.

ZQ RsSrc, Rd Pointer Equal 100110 IRdlftl sruBr

NZQ Rs,Src,Rd Pointer not Equal 100111 1 Re I oc

5.Modes: I I m =Types: PA Srcj Faults: CFUT FLIT

CFUT CFUT
FUT FUT

Eq: Rd - BOOL:Rs = Src

NEq: Rd 4-BOOL:Rs Src

Both the data and tag have to match for R to be onidered equal to Src (in either checked or
unchecked mode; this is different from the behavior of Equal and NEqua/in unchecked mode).

35

Message-Driven Processor Architecture Version I11

XLATZ RS, DSt, c Associative Lookup ioo cR

Modes: L ATypes: Faut: cFuT xLATE

Del 4-- aociativejockup(Rs); faul XLATE N no ee*y I tble was foun or I the asociaed data
value for Re is NIL
The constant field C provides a way for the XLATE exoeptio code to know who, circumnetances
surrounded the failed translation so it can behave qippopriately.

When XLATEving into an address register the key being XLATE'd Is written lifto the corrsponing
ID register.

UITZR Src, Rs Associative Enter momI ooi 0 Re Src

Mods: RTypes: [JRs Faults: cFOT

1CFUT cr;T

Enter Rs and Src into the associatWv table so that associltveloakio(Sre).Re. That is, Src Is the
key and Re is the dat. The slot used is picled at random except whe associlalookup(Src)
already existed, in which cas the old value is overwritten.

INVAL J Invalidate J 100 oo 00 oooooo

Invalidate all relocatable address registers (ones with the R bit set) on both priority levels by
copying the R bit into the I bit.

PROS RSDst Probe Associative 101101___________
RSD~t Cache 10 0R e

Modes: I ? =Types: jZ]Faults: cFuT

Attempt to find Re in the XLATE cache. I Re is there. Del +-lookup (Rs). Waes Del +-NIL.

36

Message-Driven Processor Architecture Version 11

SUSPEND Suspend 1100 0010 1 0oo000

Faults: EARY

ase"preceesing of the meod and dequsue the ..e....e unlese the S flog was SeOL Set SIR to 0.
Fault EARLY N the entire message has not yet been reed- See the SUSPEND section for more
details.

CALL Src System Call 11001i 00 Io -Src

Mode": IRIAIm iTypes: Faults: TYPEF~]CFOJT FUT TAGS
TAG9 TACA TAGS
RANGE

Fault using the vector at Src.128. Src mumt be an integer unless, the U flag is set.

SEND Src Send 110100 P I SrC

SENDE Src Send and End 11070 P i Src

SEND2 Src, Rs Send 2 1~ t 1111 1 Rsj Src I

SEND2Z Src, Rs Send 2and End 110111 1P Il S_

Modes: I =Types: Re m Faults: CFUT SEND

CFUT I CFUT

Send one or two words onto the netoric When two aw o we' sent, the one from Src is sent before
the word in Rs; hence, please note the unusual assembler syntax order of Src and Re. SENDE and
SEND2E Indicate the end of the message to the network hardware after the words they send.
SEND and SEND2 set the I Flag. while SENDE and SEN2E clea the I FReg. The op2 field is used
to encode which message priority to send the message on.

37

Message-Driven Processor Architecture Version 11

IMSrc Branch 1 ioc 100 11 00 Si

Modes: [R T1X Types: sic Fault: TYPE
CFUT FUT TAGS

1 ZNT, TAG9 TAGA TAGS

Branch forward Src words fromn the next word P.e., when Sro.0. the branch in Io the next word) and
clear the F Ouase bkt. Sic must be a signedl intger in chiedied mode.

NIL Rs, Src Branch if NIL 1 ot 1100]Rol Src

UIMIL Rs, Src Branch if Non-NIL 1111011 1 1 Rsj src

Modes: [R TJjI Types: Ra Sec Faults: TYPE

AM bu INTCFUT FUT TAGS
IAFbTINT TAG9 TAGA TAGS
IFUT I

BNIL: I RS-NI L (both tag and data equal to 0), branich forward Src words (see OR).

ONNIL N Rs*N IL (either tag or data not equal to 0), branch forward Src words (see BR).
Note that unlike the other conditional branches, Ra may be any typ except CFUT or FUT without
causing.a fault in checked mode.

DlRs, Src Branch if False Iimloo I i Ra Src _

DT Rs, Src Branch if True 111101 I i R9Is Sc

Modes: I R IIT~ Types: IRa SrcI Faults: TYPE
CFUT FUT TAGS

jSOOL INT 1 TAG9 TAGA TAGS

BF. N Re-FALSE (bit 0 of data - 0). branch forward Sec words (aee BR).
8T: I RI-TRUE (bit 0 of data - 1). branch forward Sic wards (see BR).

Re must be a boolean in chocked mode. In checked mode the branches branch on the state of bit 0
of Rs.

38

Message-Driven Processor Architecture Version 11

33 Rs, Src Branlch if Zero ittit0o If s

333 Rs, Src BraflchfN~ofzero 111111 lI R* I src_

Modes: [I1RD T1 Types: Rs4 SF] Faukb: TYPF
CFL1T FUT TAGS

N T TAG9 TAGA TAGS

WZ if dat panl of Rm. branch loward Sc od (see OR).

Bw. Nf dat paW of RasmO, branh foiwad Sic words (9ee OR).

Ra must be an kteger I checkd mode.

39

